MFCC¶
Extraction of MFCC features from audio signals
Extract MFCC (Mel Frequency Cepstral Coeficients) from an audio signal. Uses the Kaldi implementation (see [kaldi-mfcc]):
Examples
>>> from shennong.audio import Audio
>>> from shennong.processor.mfcc import MfccProcessor
>>> audio = Audio.load('./test/data/test.wav')
Initialize the MFCC processor with some options. Options can be specified at construction, or after:
>>> processor = MfccProcessor(sample_rate=audio.sample_rate)
>>> processor.window_type = 'hanning'
>>> processor.low_freq = 20
>>> processor.high_freq = -100 # nyquist - 100
>>> processor.use_energy = False # use C0 instead
Compute the MFCC features with the specified options, the output is an
instance of Features
:
>>> mfcc = processor.process(audio)
>>> type(mfcc)
<class 'shennong.features.Features'>
>>> mfcc.shape[1] == processor.num_ceps
True
References
-
class
shennong.processor.mfcc.
MfccProcessor
(sample_rate=16000, frame_shift=0.01, frame_length=0.025, dither=1.0, preemph_coeff=0.97, remove_dc_offset=True, window_type='povey', round_to_power_of_two=True, blackman_coeff=0.42, snip_edges=True, num_bins=23, low_freq=20, high_freq=0, vtln_low=100, vtln_high=- 500, num_ceps=13, use_energy=True, energy_floor=0.0, raw_energy=True, cepstral_lifter=22.0, htk_compat=False)[source]¶ Bases:
shennong.processor.base.MelFeaturesProcessor
Mel Frequency Cepstral Coeficients
-
property
name
¶ Name of the processor
-
property
blackman_coeff
¶ Constant coefficient for generalized Blackman window
Used only if window_type is ‘blackman’
-
property
dither
¶ Amount of dithering
0.0 means no dither
-
property
frame_length
¶ Frame length in seconds
-
property
frame_shift
¶ Frame shift in seconds
-
get_params
(deep=True)¶ Get parameters for this processor.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this processor and contained subobjects that are processors. Default to True.
- Returns
params (mapping of string to any) – Parameter names mapped to their values.
-
get_properties
(**kwargs)¶ Return the processors properties as a dictionary
-
property
high_freq
¶ High cutoff frequency for mel bins in Hertz
If high_freq < 0, offset from the Nyquist frequency
-
property
log
¶ Processor logger
-
property
low_freq
¶ Low cutoff frequency for mel bins in Hertz
-
property
num_bins
¶ Number of triangular mel-frequency bins
The minimal number of bins is 3
-
property
num_ceps
¶ Number of cepstra in MFCC computation (including C0)
Must be smaller of equal to num_bins
-
property
preemph_coeff
¶ Coefficient for use in signal preemphasis
-
process
(signal, vtln_warp=1.0)¶ Compute features with the specified options
Do an optional feature-level vocal tract length normalization (VTLN) when vtln_warp != 1.0.
- Parameters
signal (Audio, shape = [nsamples, 1]) – The input audio signal to compute the features on, must be mono
vtln_warp (float, optional) – The VTLN warping factor to be applied when computing features. Be 1.0 by default, meaning no warping is to be done.
- Returns
features (Features, shape = [nframes, ndims]) – The computed features, output will have as many rows as there are frames (depends on the specified options frame_shift and frame_length).
- Raises
ValueError – If the input signal has more than one channel (i.e. is not mono). If sample_rate != signal.sample_rate.
-
process_all
(utterances, njobs=None, **kwargs)¶ Returns features processed from several input utterances
This function processes the features in parallel jobs.
- Parameters
utterances (:class`~shennong.uttterances.Utterances`) – The utterances on which to process features on.
njobs (int, optional) – The number of parallel jobs to run in background. Default to the number of CPU cores available on the machine.
**kwargs (dict, optional) – Extra arguments to be forwarded to the process method. Keys must be the same as for utterances.
- Returns
features (
FeaturesCollection
) – The computed features on each input signal. The keys of output features are the keys of the input utterances.- Raises
ValueError – If the njobs parameter is <= 0 or if an entry is missing in optioanl kwargs.
-
property
remove_dc_offset
¶ If True, subtract mean from waveform on each frame
-
property
round_to_power_of_two
¶ If true, round window size to power of two
This is done by zero-padding input to FFT
-
property
sample_rate
¶ Waveform sample frequency in Hertz
Must match the sample rate of the signal specified in process
-
set_logger
(level, formatter='%(levelname)s - %(name)s - %(message)s')¶ Change level and/or format of the processor’s logger
- Parameters
level (str) – The minimum log level handled by the logger (any message above this level will be ignored). Must be ‘debug’, ‘info’, ‘warning’ or ‘error’.
formatter (str, optional) – A string to format the log messages, see https://docs.python.org/3/library/logging.html#formatter-objects. By default display level and message. Use ‘%(asctime)s - %(levelname)s - %(name)s - %(message)s’ to display time, level, name and message.
-
set_params
(**params)¶ Set the parameters of this processor.
- Returns
self
- Raises
ValueError – If any given parameter in
params
is invalid for the processor.
-
property
snip_edges
¶ If true, output only frames that completely fit in the file
When True the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends.
-
property
vtln_high
¶ High inflection point in piecewise linear VTLN warping function
In Hertz. If vtln_high < 0, offset from high_freq
-
property
vtln_low
¶ Low inflection point in piecewise linear VTLN warping function
In Hertz
-
property
window_type
¶ Type of window
Must be ‘hamming’, ‘hanning’, ‘povey’, ‘rectangular’ or ‘blackman’
-
property
use_energy
¶ Use energy (instead of C0) in MFCC computation
-
property
energy_floor
¶ Floor on energy (absolute, not relative) in MFCC computation
-
property
raw_energy
¶ If true, compute energy before preemphasis and windowing
-
property
cepstral_lifter
¶ Constant that controls scaling of MFCCs
-
property
htk_compat
¶ If True, get closer to HTK MFCC features
Put energy or C0 last and use a factor of sqrt(2) on C0.
Warning: Not sufficient to get HTK compatible features (need to change other parameters).
-
property
ndims
¶ Dimension of the output features frames
-
property